16 research outputs found

    On the security of the Yen-Guo's domino signal encryption algorithm (DSEA)

    Get PDF
    Recently, a new domino signal encryption algorithm (DSEA) was proposed for digital signal transmission, especially for digital images and videos. This paper analyzes the security of DSEA, and points out the following weaknesses: 1) its security against the brute-force attack was overestimated; 2) it is not sufficiently secure against ciphertext-only attacks, and only one ciphertext is enough to get some information about the plaintext and to break the value of a sub-key; 3) it is insecure against known/chosen-plaintext attacks, in the sense that the secret key can be recovered from a number of continuous bytes of only one known/chosen plaintext and the corresponding ciphertext. Experimental results are given to show the performance of the proposed attacks, and some countermeasures are discussed to improve DSEA.Comment: 11 pages, 5 figure

    On the security of the Yen-Guo's domino signal encryption algorithm (DSEA)

    No full text
    Recently, a new domino signal encryption algorithm (DSEA) was proposed for digital signal transmission, especially for digital images and videos. This paper analyzes the security of DSEA, and points out the following weaknesses: 1) its security against the brute-force attack was overestimated; 2) it is not su#ciently secure against ciphertext-only attacks, and only one ciphertext is enough to get some information about the plaintext and to break the value of a sub-key; 3) it is insecure against known/chosen-plaintext attacks, in the sense that the secret key can be recovered from a number of continuous bytes of only one known/chosen plaintext and the corresponding ciphertext. Experimental results are given to show the performance of the proposed attacks, and some countermeasures are discussed to improve DSEA. Key words: DSEA, dominos, cryptanalysis, encryption, ciphertext-only attack, known-plaintext attack, chosen-plaintext attack This paper has been accepted by The Journal of Systems and Software in April 2005

    Detectability Improved Tamper Detection Scheme for Absolute Moment Block Truncation Coding Compressed Images

    No full text
    Since digital media is gaining popularity nowadays, people are more concerned about its integrity protection and authentication since tampered media may result in unexpected problems. Considering a better media protection technique, this paper proposes an efficient tamper detection scheme for absolute moment block truncation coding (AMBTC) compressed images. In AMBTC, each image block is represented by two quantization levels (QLs) and a bitmap. Requiring insignificant computation cost, it attracts not only a wide range of application developers, but also a variety of studies to investigate the authentication of its codes. While the existing methods protect the AMBTC codes to a large extent, the leakage of some unprotected codes may be insensitive to intentional tampering. The proposed method fully protects the AMBTC codes by embedding authentication codes (ACs) into QLs. Meanwhile, the most significant bits of QLs are symmetrically perturbed to generate the candidates of ACs. The ACs that cause the minimum distortion are embedded into the least significant bits of QLs to minimize the distortion. When compared with prior works, the experimental results reveal that the proposed method offers a significant sensitivity-of-tamper property while providing a comparable image quality

    A bit toggling approach for AMBTC tamper detection scheme with high image fidelity.

    No full text
    The existing tamper detection schemes for absolute moment block truncation coding (AMBTC) compressed images are able to detect the tampering. However, the marked image qualities of these schemes can be enhanced, and their authentication methods may fail to detect some special tampering. We propose a secure AMBTC tamper detection scheme that preserves high image fidelity with excellent detectability. In the proposed approach, a bit in bitmaps of AMBTC codes is sequentially toggled to generate a set of authentication codes. The one that causes the least distortion is embedded into the quantization levels with the guidance of a key-generated reference table (RT). Without the correct key, the same reference table cannot be constructed. Therefore, the proposed method is able to detect various kinds of malicious tampering, including those special tampering techniques designed for RT-based authentication schemes. The proposed method not only offers better image quality, but also provides an excellent and satisfactory detectability as compared with previous works

    A novel authenticatable color visual secret sharing scheme using non-expanded meaningful shares

    No full text
    In this paper, a novel visual secret sharing scheme is presented to hide a secret image into two meaningful cover images which are called share images with no pixel expansion. Simultaneously, the proposed scheme embeds an extra confidential image in these two share images. People who gather the two share images can obtain the secret image by stacking them without any complex computation. After one of the share images is shifted for certain unit, people can get the extra confidential image by their visual system to check the validity of the revealed secret image. Except for sharing binary secret image, the proposed scheme can also be applied to color visual secret sharing scheme to hide color secret image into two meaningful color halftone images without any pixel expansion, and people can derive the extra confidential image for authentication by shifting one of the share images
    corecore